

Market Perspectives for Photonics Companies in Healthcare

European Photonics Roadshow series - Stockholm

11 June 2018

Dr. Thierry ROBIN

Market research - Technology analysis - Strategy & Decision making

Optics - Photonics - Imaging - Sensors

Activities:

- Pushing optics & photonics technologies into application markets
- Sourcing these technologies for application market integrators

Tematys - Sensing & - Healthcare acquiring **Technology Sourcing** information & Assessment - ASD - Transmitting information - Industry **Our clients Photonics** Companies **Technologies** Start-ups Research centers **Application** - Displaying & Delivering Universities information **Markets Public institutions** - Lighting Consumer - Energy providing Strategy & **Market Entry** - Processing

More than 120 customers in 15 Countries

- Market Studies and Reports
- Technology transfer
- Technology scouting & assessment
- Strategy & Business Plan
- Tematys is also a partner for Exploitation and Dissemination activities in H2020 and national Projects
- On-going projects: MIRPHAB, MIRBOSE, C3PO, COMTONIQ

Companies & start-ups

Research centers & Universities

Public institutions & Clusters

Content

- 1. Introduction
- 2. Needs in Healthcare
- 3. Market of Photonics for Healthcare
- 4. Opportunities in Healthcare
- 5. Conclusions

Content

- 1. Introduction
- 2. Needs in Healthcare
- 3. Market of Photonics for Healthcare
- 4. Opportunities in Healthcare
- 5. Conclusions

Grey & Green Revolutions

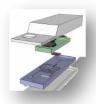
- In the last 20 years, we have faced two simultaneous revolutions: **grey** and **green**.
- The **grey** revolution is linked on continuous growth of an aging population as well as economic issues linked to sustainable unbalanced healthcare systems. It modifies the entire perspective from a treatment-oriented system toward a diagnostic-oriented one, the end-point being companion diagnostics, which is promising but far away.
- The **green** revolution is linked to the increasing risk of epizootic diseases and food-related disorders. It urgently requires solutions for safer and healthier food.

Necessity of New Technologies

- All of these revolutions have in common a strong need to study the realtime evolution of living organisms, or a part of them (i.e. tissues, organs, cells, proteins, DNA).
- In terms of business, the technologies permitting adequate response to these challenges will have a bright future.
- BRICs and other emerging countries will have to face the same problems:
 - in the short-term: food safety
 - in the medium-long term: aging population

Million-Unit Markets Targeted

- These revolutions have put **Photonics technologies at the heart of the scientific** agenda. New kinds of reliable sources, detectors, passive components and specialty fibers are now available.
- Biophotonics products are becoming increasingly rugged and costeffective. Today, the Biophotonics market consists of hundreds or thousands of units/year of high-end desktop devices for Life Sciences and Healthcare applications.
- Photonics technologies could potentially spread to cost-effective devices targeting million-unit markets for in situ and Point-of-Care measurements.
- In the last years, industrial leaders in analytical sciences (GE Healthcare, Agilent, Danaher, Thermo, etc.) have targeted Photonics companies.
- More interesting is the involvement of companies like Biomerieux & Sanofi in Photonics buy-outs.



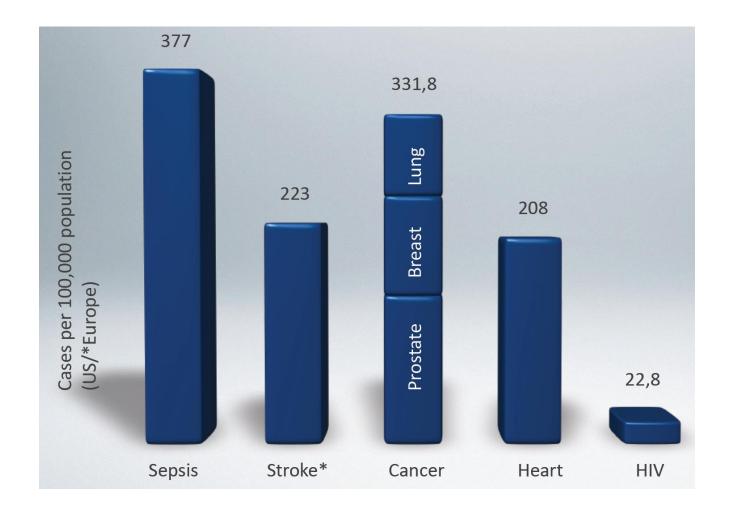
Content

- 1. Introduction
- 2. Needs in Healthcare
- 3. Market of Photonics for Healthcare
- 4. Opportunities in Healthcare
- 5. Conclusions

Critical needs of the healthcare sector

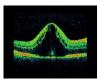
- Democratizing consumer diagnostics
 - Accurate clinical data anywhere and anytime

Powerful tools to detect disease earlier

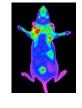

- Tools to predict drug efficacy, toxicity and side effects with a lower cost and higher data richness
 - Personalized medicine

Tools to interface with the nervous system

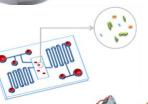
Most Common Diseases

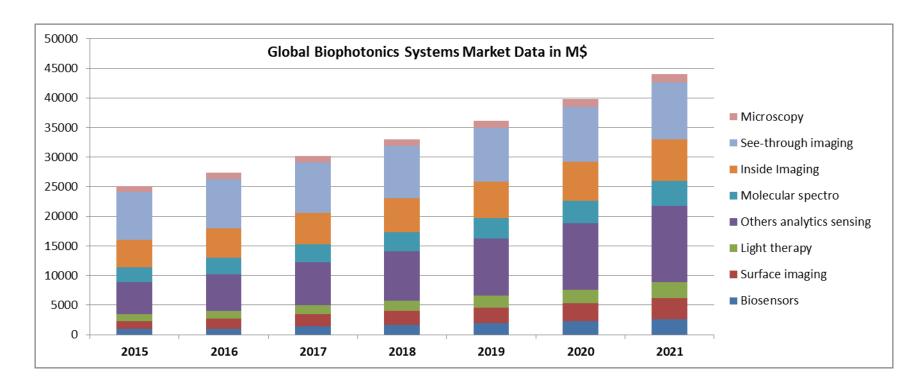

Content

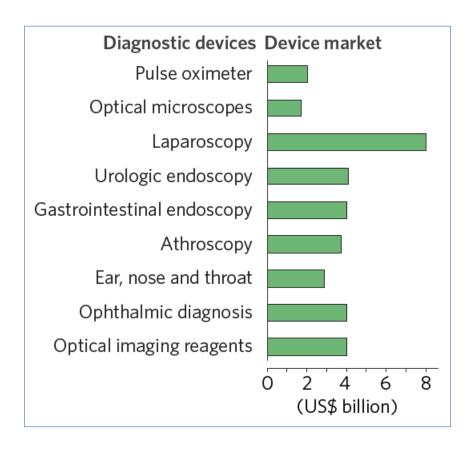
- 1. Introduction
- 2. Needs in Healthcare
- 3. Market of Photonics for Healthcare
- 4. Opportunities in Healthcare
- 5. Conclusions


Photonics Technologies for Healthcare

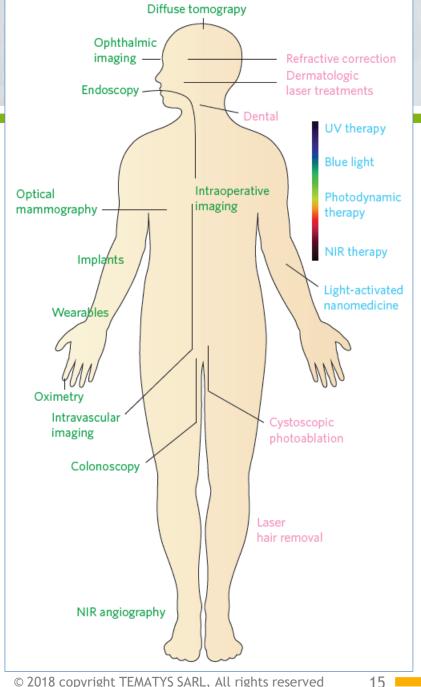
Imaging	In-Vivo In-Vitro	Surface imaging Inside imaging (endoscopy)	Slit lamp, Ophthalmoscope, Aberrometer
			OCT for ophthalmology, dermatology
			Photoacoustic imaging for dermatology
			Rigid
			Flexible
			Disposable
			Camera Pills
		See-through Imaging Optical microscopy	X-ray imaging
			Optical molecular imaging (fluorescence, bioluminescence, etc.)
			Photoacoustic imaging
			Classical
			Confocal
			Non-linear
			Super-Resolution
Analytics, Sensing	In-Vivo	Oximetry	Hospital oxymetry, Home Care oxymetry
		Sequencing	Sequencing, next-generation sequencing
	In-Vitro	Cytometry	Classical cytometry, online cytometry
		Molecular spectroscopy	IR
			UV-VIS
			Raman
			Others (colorimetry, ellipsometry, etc.)
		Biosensors	Label-free
			Labeled
Processing, Curing	Light Therapy	Medical lasers	Surgery lasers
		Others	Decontamination





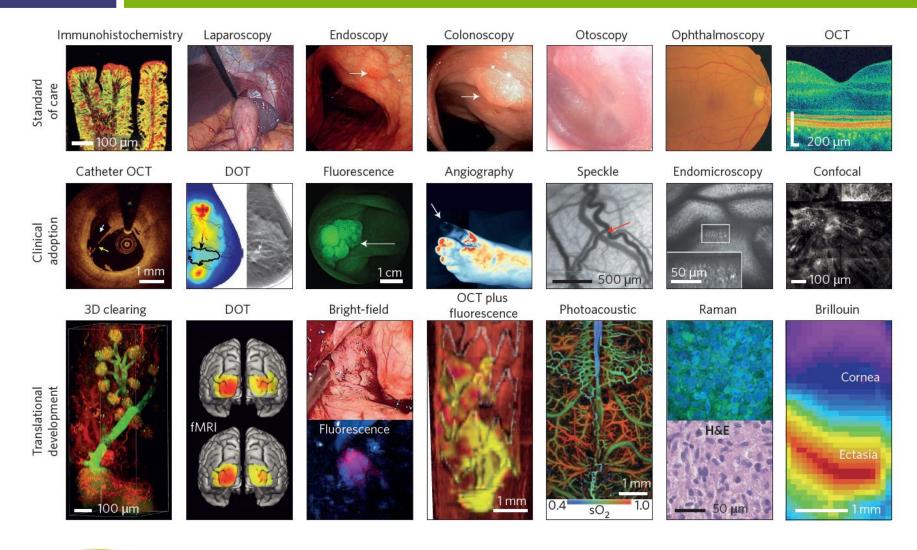

Market of Photonics Systems for Healthcare

- The Market of Photonics systems for Healthcare will exceed \$30B in 2018.
- The category "Other analytics sensing" includes the oximetry, sequencing and cytometry markets.



Diagnostic devices

Diagnosis and imaging (green), surgery (pink) and therapy (blue)



Market Trends

- Miniaturization is a major trend in every industry sector, and Healthcare is no exception.
- Until now, healthcare technologies have been bulky, expensive systems installed in hospitals and life science labs (CT scanner, MRI, etc.).
- Today, more compact and affordable systems are available at the doctor's office (Point-Of-Care).
- The next step is small devices available at a patient's home, or anywhere for that matter (glucometer, oxymeter, electrocardiograms on smartphones, etc.).

Evolution of technologies

Content

- 1. Introduction
- 2. Needs in Healthcare
- 3. Market of Photonics for Healthcare
- 4. Opportunities in Healthcare
- 5. Conclusions

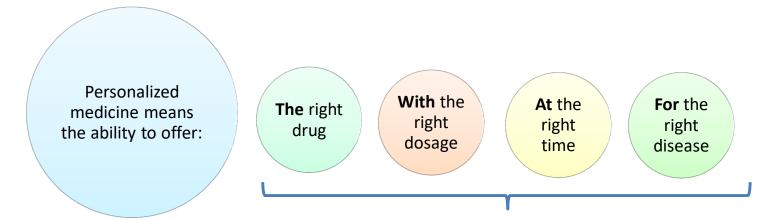
Emerging medical applications of photonics technologies

- Photonics technologies for diagnostic are increasingly less invasive, more accurate, molecular specific, cost effective and mobile.
- More surgical procedures will benefit from advanced imaging and lasers.
- Moreover photonics therapies will integrate nanotechnologies and genetic technologies.

Area	Emerging applications	
Diagnostic imaging	Non-invasive screening Molecular diagnosis	
Health monitoring	Point-of-care testing Implantable devices Mobile and Home care	
Surgery	Robotic surgery Intraoperative optical biopsy Augmented Reality	
	Targeted therapy Personalized medicine Optogenetics	

Home Care Applications

- Home Care consists of providing medical services at a patient's home. The objectives are to reduce medical costs and improve the patient's condition by reducing hospitalization time, while providing continuous at-home monitoring.
- Today, Home Care is mainly applied to:
 - Elderly people
 - Post-surgery recovery
 - Chronic disease monitoring
- ⇒ Home Care technologies can be classified into four groups:

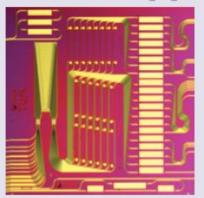

Home Care: An Opportunity for Photonics

- Providing medical attention at a patient's home requires relatively inexpensive, miniaturized, sensitive diagnostic tests.
- Photonics technologies are well-positioned for Home Care applications. Indeed, these technologies address all of the above requirements.
- Over the next three years, we don't expect to see wide development in the Home Care market. However, an important growth is forecast for 2020 - 2025.

Introduction to Personalized Medicine

- Personalized medicine is an emerging field that promises radical changes in healthcare.
- Personalized medicine refers to the tailoring of medical treatments to each patients' individual needs and characteristics.

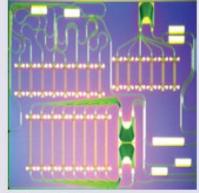
For each circle above, technology helps to make the right decision

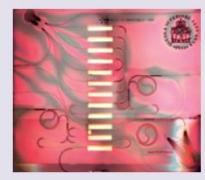

Personalized Medicine An Opportunity for Photonics

- Personalized diagnostic tests already exist (i.e. Alere-CD4 monitoring) and will spread in the near future
- Nevertheless, the model "one drug for one patient" seems almost impossible at this stage
- Challenges:
 - Pharmaceutical business model needs to change
 - Costs
 - Clinical validation
 - Involve all entities (Health authorities, pharmaceutical companies)
- The advantages of photonics for Personalized medicinal testing are very similar to the ones for Home Care testing.

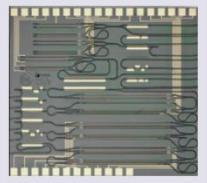
Emerging technologies: Photonics Integrated Circuits (PIC)

Medical and bio-imaging

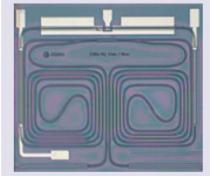

Pulse shaper for bio-imaging


Integrated tunable laser for optical coherence tomography

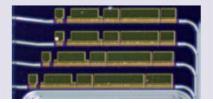
Optical data handling

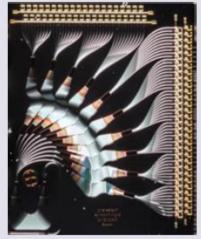


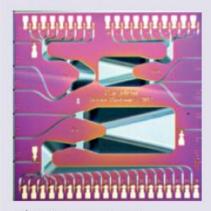
Pulse serialiser



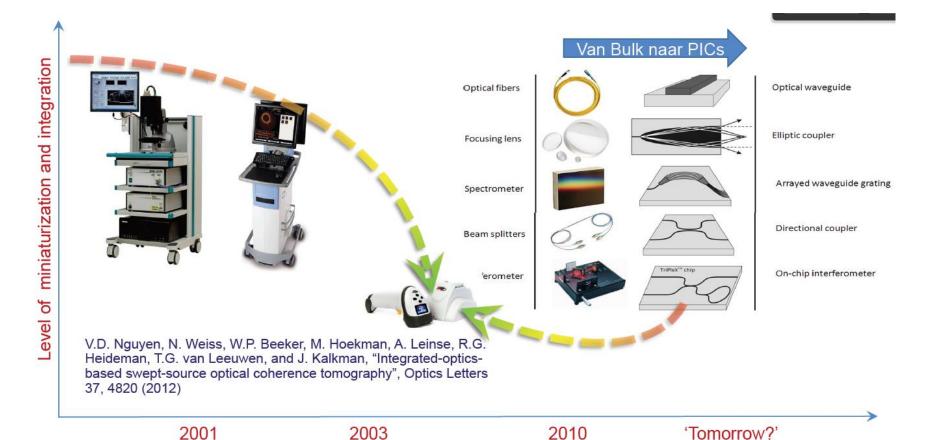
All-optical regenerator for constant envelope WDM signals


Variety of lasers

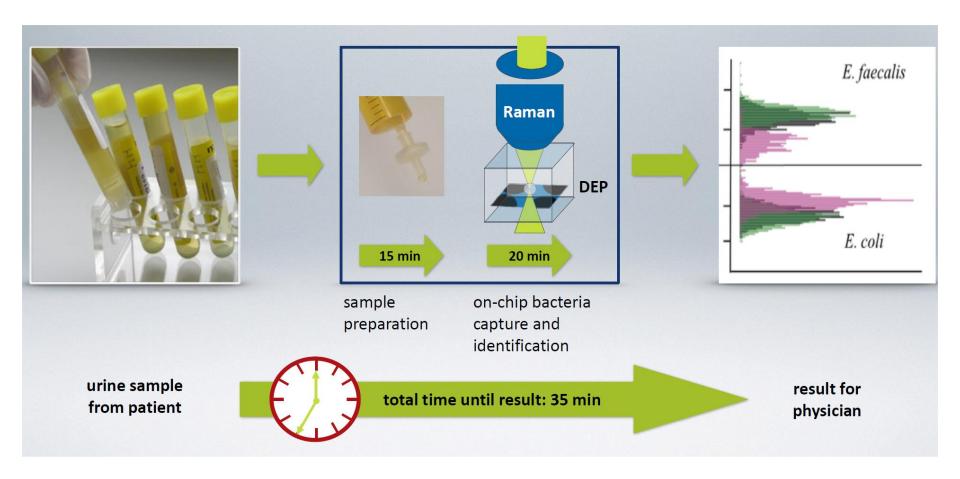

Widely tunable laser


Mode-locked laser

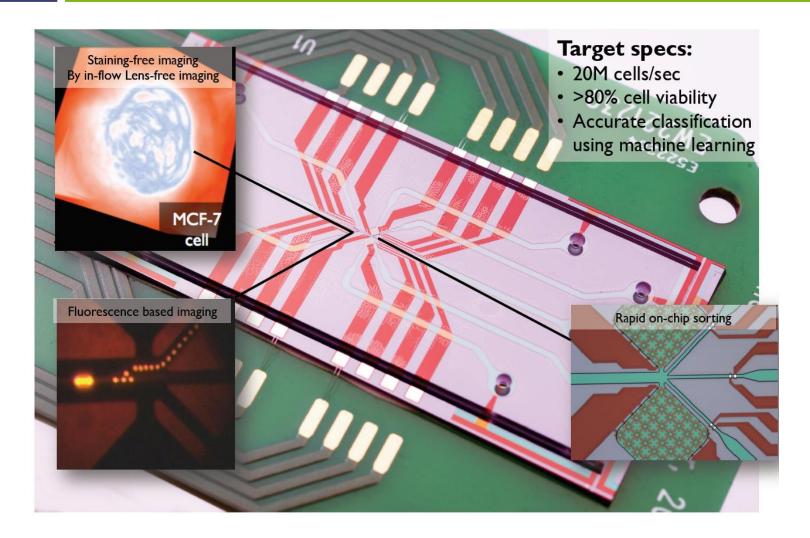
Sensor readout units


100-channel spectrometer

Fibre Bragg grating interrogator


Emerging technologies: PIC for OCT

Identification of bacteria directly from body fluids



26

Cell Sorting Platform

Maverick Technology

HOW MAVERICK™ TECHNOLOGY WORKS

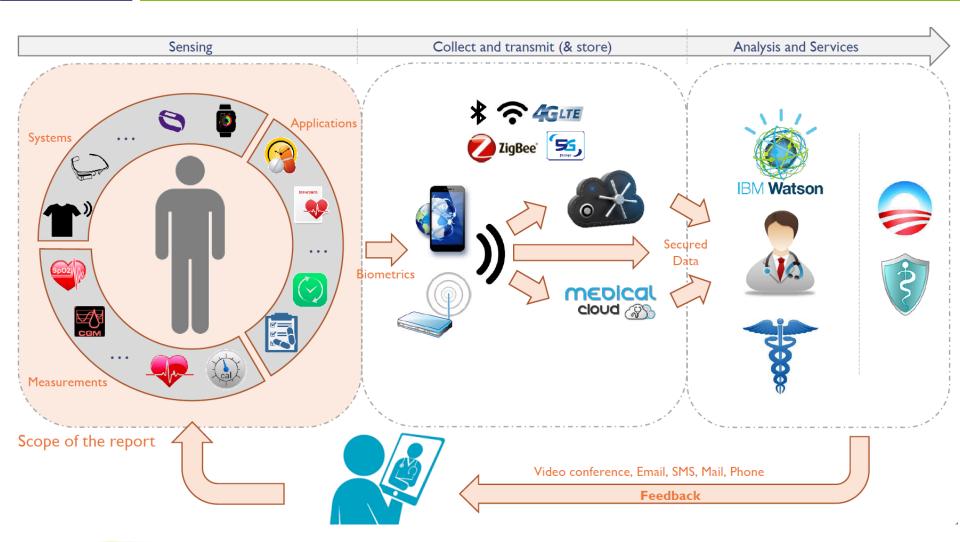
The key to the Maverick™ Detection System is its patented silicon chip containing arrays of photonic Microring Sensors that can simultaneously analyze multiple proteins from a single small sample.

 Infrared laser generates light in a broad wavelength range, which traverses waveguide.

Each ring in the array contains a distinct antigen which enables multiplexing.

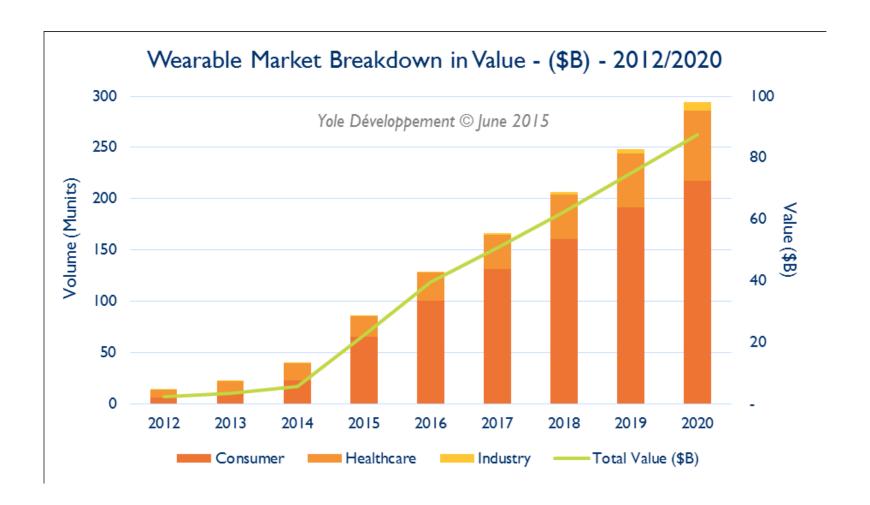
Antibodies or proteins in liquid sample bind to antigens on ring.

 Each ring "resonates" at a particular wavelength, which changes as antibodies or proteins bind.

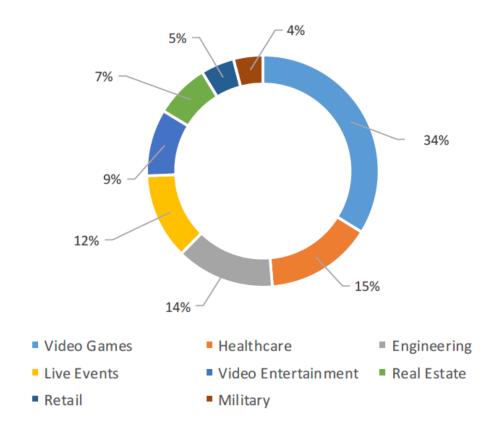

The resonance shifts proportionally to the amount of material bound.

6. Results are calculated by Genalyte software.

Array of microring sensors



Wearables: an "internet of things" application


Wearable Market for Consumer and Healthcare

Augmented and Mixed Reality

⇒ By 2025, the Augmented and Mixed Reality market is predicted to expand to \$85B.

From smart glasses ... to AR and VR

Content

- 1. Introduction
- 2. Needs in Healthcare
- 3. Market of Photonics for Healthcare
- 4. Opportunities in Healthcare
- 5. Conclusions

Summary and Conclusions

Photonics in Healthcare is at a turning point in its evolution, as it prepares to leave the bulky systems market and enter the mass market.

Analysis of this evolution:

- Product prices ranging from \$300k \$1M:
 - Big equipment for hospitals and analysis laboratories (X-ray scanners, high-resolution microscopes, bulky cytometers, etc.)
 - Little biophotonics development is expected
 - Low market growth (3% 5%)
- Product prices ranging from \$10k \$300k:
 - Systems for the life science market
 - Compact systems for diagnostics and monitoring in doctor's office (i.e. OCT for ophthalmologists, endoscopes for gastroenterologists).
 - Current market growth: 8% 10%, but will slow in 5 10 years

Summary and Conclusions

- Product prices ranging from \$1 \$1,000:
 - Small, portable, easy-to-use devices for home and personalized use
 - Small market today, but high growth is expected (15 20%)
 - Development in Micro/Nanophotonics and Photonics Integrated Circuits is necessary
 - Two co-existing applications reside in this market:
 - Devices for **welfare** (gadgets, smartphone applications, etc.) with no "medical value". The first products in this category are already on the market.
 - Devices for home diagnostics and monitoring (glucose measurements, heart monitoring, etc.) providing highly reliable medical information. Large investments are necessary for developing cheap AND reliable systems.

Thank You!

Exploration of Photonics markets

Thierry ROBIN

6 cité de Trévise - 75009 PARIS - France

Tel: +33 6 48 08 63 32 - Email: trobin@tematys.com

